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ABSTRACT

This report presents a first-order discussion of the perturbations
in the orbital motion of a satellite about an oblate primary. The
approach is non-traditional in that the secular changes in the semi-
major axis, eccentricity, inclination, and longitude of the ascending
node are all derived directly from the translational and rotational
equations of motion. The exactly solvable problem of motion in the
primary's equatorial plane 1s.used to obtain thé advance of the argument
of periastron and the consequent change in the time of periastron passage.
In addition, a simple discussion of a very restricted three-body problem

is given to illustrate the effects of third~body perturbations.
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1 INTRODUCTION

A. Motivation and Outline

Celestial mechanics is one of the oldest fields of study in physics
and astronomy. With the advent of the space age and the rapid development
of the electronic digital computer, the field has undergone a resurgence
of both theoretical development and practical use. 01d subjects have
their own vocabulary, their own mathematical methods, their own symbolism,
their own assumed knowledge base, etc. Although many scientists and
engineers lack this specialized training, there is still the need for
them to be cognizant of the principal results of the two-body problem
and of perturbation theory. For most artificial satellites, the principal
perturbation is that due to the oblateness of the earth (symbolized by a
non-zero value for JZ)‘ In this report I derive all of the first-order
secular variations due to J2 in a non-traditional (for a celestial
mechanic) fashion. Thus, one can see, without the appurtenances of
celestial mechanics, both the physical cause of the perturbations and
their effects. Some of these results are scattered in the standard
reference books. However, the treatment of the exact solution for motion
in the earth's equatorial plane is new. Finally, as the satellite's
distance from the earth increases, the perturbations of its motion due
to the sun and the moon become more important. Hence, a very simple
treatment of third-body perturbations is also included.

The report has some caveats the reader needs to know. First,

because almost no new physics is involved, the equations have been kept
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to a minimum. Second, to keep th: framewor: ot che discussioun constant,
this is a geocentric report. Nowhere is any particular property of the
earth used nor does the geocentric aspect limit the discussion. Lastly,
except for §IID*, the entire report is for first-order perturbation
theory only. Extrapolating the conclusions reached herein beyond this
limitation is not necessarily correct.

We next present brief summaries of two-body elliptic motion and the

geopotential. Following that is a detailed discussion of motion in the
earth's equatorial plane. This illustrates various techniques of analysis
and an analytic solution to such a problem. We then turn to motion in
any plane and exhibit another method of analysis. This time the equations
for the rates of change of the angular momentum and the energy are used

to further our understanding of the motion. This section closes with

the perturbation equations in the classical form. The last section

deals with a primitive three-body problem so that the effects of the sun
and moon can be fllustrated.

B. Brief Summary of Two-Body Elliptic Motion

The classical two-body problem has the artifical satellite, of
negligible mass m, revolving about the earth whose mass is MO' The

coordinate system with origin at the center of mass of the earth is

assumed to be an inertial one. We will take the extension of the earth's
equator as the xy plane and have the x axis point in the direction of the Vernal

Equinox. The z axis points in the direction of the North Celestial Pole

*Equations (46, 47) are exact but our handling of them is first-order.
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and the y axis completes a right-handed triple. The force is central
[the potential is given in Eq. (llc)] so the motion takes place in a
plane. The plane's normal is the angular momentum vector. The form of

the orbit is an ellipse which can be parametrically described by

r = a(l—ez)/(l + ecosv) (la)
or

r = a(l - ecosE). (1b)

The ellipse's semi-major axis is a, its eccentricity is e, v is the
azimuthal coordinate in the orbital plane measured from the point of
closest approach (i.e., perigee; v is also called the true anomaly), and
E is an auxiliary angular variable named the eccentric anomaly. For an
arbitrary orientation of polar coordinates in the orbital plane the

distance, r, would be given by
r= a(l—ez)/ll + ecos(u-w)], (1c)
us=yv+uw, (2)

where w is called the argument of perigee. See Figure 1. The time

dependence of the orbit is implicitly given by the relationships between

the true anomaly, the eccentric anomaly, and the mean anomaly, M;
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tan(v/2) = [(L + &)/ - &)1 cances2), 3)
E-esinE=M=n(t -T) = n(t ~ To) + Mo’ (4)

where the mean motion, n, is related to the semi-major axis and period,

P, of the motion by

1/2 1/2

_ n = (GMo/a3) = (u/ad) = 2m/p. (5)

G is the universal constant of gravitation. The standard epoch is the time

of perigee passage, T, when M = 0. If some other, arbitrary, epoch t = To

is used, then M = Mo at that instant.

To complete the three dimensional picture of the motion, we need to

know the direction of the angular momentum vector, L,
L = (sinQsini, -cosQsini, cosi). (6a)

The inclination of the orbital plane to the equator is symbolized by

ie[0,180°]. That place on the equator where the plane of the orbit

intersects it and the satellite is moving northward is called the ascending

node. § is the longitude of the ascending node, €[0,360°). See Figure 2.

The magnitude of the angular momentum vector is given by mL,

2. 112 A
L = [pa(l -e“)] ,L=LL. (6b)
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The angle (for which there is no standard notation) w +  is called the

longitude of perigee. Finally, to go from the cartesian orbital plane

location vector

r = r(cosv,sinv,o0), (7a)
p to the cartesian geocentric location vector or spherical geocentric
n location vector,
X cos§cosa
r = y = r| cosdsina |, (7b)
z sind
we need to rotate by the orthogonal matrix S,
cosQ -sin} O 1 0 0 cosw -sinw O
S = [8in cosR O 0 cosi -sini sinw cosw 0 |. (7¢)
0 0 1 0 sini cosi 0 0 1
The results are
~ x/r = cosQcosu - sinQcosisinu,
: y/r = sinQcosu + cosficosisinu, (8)

z/r = sinisinu,
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or

Q+ tan—l(cositanu), (9a)

o]
[}

8 = sin-l(sinisinu), (9b)

where u was defined in Eq. (2). Alternative expressions of the invariable

plane are

xsinQisini - ycosisini + zcosi = 0 (10a)

and

tan§ = tanisin(a - Q). (10b)

All of this is derived directly from the equations of motion. 1In the

plane of the orbit their form is

¥ - 92 = - 3U/0r; dw/dt = w W, (11a)
v + 2rv = - (1/r)3U/dv, (11b)
U= -u/r. (11c)

The key to the solution of the two-body problem and the remainder of the

analysis presented herein is the ability to analytically integrate Eq. (1lb)

once.

Ty




Cc. Brief Summary of the Geopotential Through J2

The gravitational potential at a point located r outside of a body

# 1 whose mass density is p is given by |

LEIE R (12) -:
Volume '£ 7~ X f

1If one uses the spherical harmonic expansion of the denominator of the

integral one finds, through second-order terms,
U(x) = (6/r)fp(x')dr’ - (6/r%)fr'p(x')cosBdr’
2 '2 ] 2 '
+ (G/2r) [(x"p(r') (1 - 3cos“B)dr'. (13)
The angle between r and r' is denoted by B. The first integral is the total
mass (MO for the earth). The second integral vanishes because the origin of

the coordinate system is at the center of mass. The third integral is equal

to [(three times the moment of inertia about the line joining the center of

mass and r) minus (the sum of the principal moments of inertia)]. If we employ
the symmetry of an oblate spheroid and express the last integral in terms of

the principal moments of inertia of the spheroid (A = equatorial moment of

inertia, C = polar moment of inertia) then
U(E,8) = - /D)1 + 3,51 - 3sin’8)/ (2r0) ] (14a)

where

3, = (A - C)/(M’Ri) = 1.0827 x 10”3 for the earth, (14b)




and § is the geocentric latitude of r. We shal! abbroviate

n=1J (15)

2
2'e’

and note that the ratio of the forces due to the earth's tocal mass and that

due to its oblateness on an object a distance R > R’ away 1is

€ = n/Rz. (16)

For a stationary satellite, € = 2.5 x 10-5 ~ 5 arc seconds.

10
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II. MOTION IN THE EARTH'S EQUATORIAL PLANE

With 6§ = 0 the potential, from Eq. (l4a), is
24n 2 2
U(r,0) = - (W/r) (@ + J,Rg/2r") = - (u/r)(1 + n/2r%). 17)
The equations of motion, Eqs. (lla, 11b), have the two integrals
22 2.2
(r™ + r"v7')/2 + U(r,0) = E(s O here), (18a)
2.
r'v =1L (> 0 always). (18b)

The existence of the angular momentum integral allows a discussion of the

orbit, r(v), instead of the time dependence of the motion. Since,
r' = dr/dv = £/v, t = Lr'/r?. (19)
The conservation of energy equation, Eq. (18a), can be written as

2 o 20%E - u(r, 00112, (20)

(r')2 +r

When J2 = 0 the semi-major axis and eccentricity were defined by

a=- /2, e = 1+ ZELzluz. (21)




As long as J2 is small, these quantities will have a meaningful interpretation
as a "semi-major axis" and "eccentricity'. In any case, they too are constants
of the motion. Eliminating E and L2 from Eq. (20), the equation describing

the orbit may be reexpressed as

"2 = - rr(r)/a2 Q1 - e 1Y2, (22a)
with

Fix) = zir « 2 )0 ~ ¥} ~ a0 (22b)
and

r, = a(l +e). (22¢)

This will be the starting point for the remainder of the analysis presented

in §II. We note that if J, were zero, then the roots of F would be O, T

2
(perigee distance), and r, (apogee distance).

A. Circular Orbits

A circular orbit is always possible for non-zero J2 and always stable
for small J2. Since r' = 0, the radius of the orbit is a root of F. It's
actually simpler to derive it from Eq. (20). The result is (e = n/az)

/

radius = (a/2)[1 + (1 - 6€)2/%]<a.




[P

Thus, the only effect is to reduce the size of the orbit. But from Eq. (17) we
see that if r is constant, then a positive J2 merely augments the central mass;
hence for the same energy the satellite would be more tightly bound.

B. "Elliptical Orbits'": Apogee and Perigee

It is clear from Eq. (22a) that the roots of F represent the turning
points of the orbit. It is a simple matter to show that F has three real
roots (two of which are equal for a circular orbit) and we know that as

Jz + 0 they must approach 0, r, and r The one near zero is not a physical

+
turning point. Let us call the three true roots of F (for J2 ¥ 0), Ro’

Rp (for perigee), and Ra (for apogee). Their values can be approximated

through the use of Newton's method. One finds (g = n/a2 still)

R, = ac/(1 - &%), (24a)
Rp =r_-ae/[2e(l -e)] <r_, : (24b)
R o=t * ac/[2e(1 + e)] > r,. (24c)

Thus, perigee is closer in and apogee further out for the perturbed "ellipse"
than for the unperturbed ellipse. The "semi-major axis", A, and "eccentricity",

E, can be derived by using the formulas for elliptical motion, namely

2A = Ra + Rp, (25a)

13




2AE = R_ - Rp, (25b)
or

Ala=1 -¢€/[2Q - eD)) <1, (26a)

Ele = 1 + ¢/(1 + e2)/[22Q - e)] > 1. (26b)

We already knew that the "focal distance' was smaller and we now see that

the reason is that the "eccentricity" is larger and the "semi-major axis" is

smaller.

It now seems logical to ask about the utility of

r = A(1l - Ez)/(l + Ecosv), (27)

as a representation of the orbit.

n we find

ac(cosv + 3e + 3e2cosv + e3)

1f we express this through first order in

r= ro(v) -

where

2e(l - ez)(l + ecosv)2

’ (288)

r () = a(l - e2)/(1 + ecosv). (28b)




Equation (27) can only represent the orbit except for those terms in v which

vanish at v = 0 and v = m. However, the value of r at the turning points is

independent of v, so that there can be no secular change in A or E due to J

2.
C. "Elliptical Orbits": The Orbit

Assuming that Eqs. (22) can not be exactly solved, we try a physicist's

perturbation approach. We write

r(v) = r (v) + erl(v) + eztz(v) s v a (29)

substitute this into the equation, separate powers of €, and solve the result-
ing system of equations. If we do this [but we actually use r(v) = ro(v)

+e(l - ez)rl(v) for simplicity] the coefficient of € (which must vanish) is

£ + P(VIT, = q(v),

(30a)
p(v) = (ecos’v - cosv - 2e)cosv/(l + ecosv), (30b)
qa(v) = a(l + ecosv)cscv/[2e(1 - e)?]. (30¢)
The solution of Eqs. (30) for r,(v) is
[ - - :s:::w)z _ alcosv + ::(: 3{2%:::::::3 + 30 ¢ atn’v)] (509




The arbitrary constant of integration is C and the initial condition
is r(Q) = Rp with the expression (24b) used for Rp. Although the initial
condition does not determine the value of C, the existence and uniqueness

theorem for the differential equation (30a-c) allows us to set C = 0. Hence,

ac[cosv + 3e + 3e2(cosv + vsinv) + e3(1 + sinzyll
2¢(1 - ez)(l + ecosv)2

r(v) = ro(v) - (31)

Compare with Egqs. (28).

We can now extend our analysis to compute the advance of perigee.
The presence of the secular term, o¢c vsinv, means that although r(0) = r(2m)
=r(4m) =, . . and r(m) = r(3n) = v(57) . . . (cf. page 14), it is not
necessarily true that the minimum and maximum values of r occur at these true
anomalies. By construction, the first perigee occurs for v = 0. We know the
first apogee must occur near v = T [cf. Eq. (la) or (28b)]. By computing
r'(v) from Eq. (31), setting v = - ™+ eVa in the result, and solving for

Va by expanding all terms through first order in € we find
= 2,2
. A {1 + 3e/[2(1 - )]} > w. (32a)

Similarly, the second perigee must occur near v = 27, and an analogous

procedure yields
vp = 2v8 > 2m. (32b)

Hence, the advance of the argument of perigee is symmetrically distributed




over each half of the orbit. Clearly the time of perigee passage does not
increase by only P. Its change is given by (vp - 2m)/<v> where the angular
bracket denotes an average angular rate. A simple average for Vv is obtained

from Eq. (18b) at the perigee and apogee points, whence

T

T -P=3me/[nQl - e2)/2

3 ] > 0. (33)

The reader may notice that r(m) = Ra with Ra given by Eq. (24c) and then

wonder why v, of Eq. (32a) is greater than m. The reason is that the Taylor

series for the cosine contains no first-order terms.

Finally, to illustrate these effects in an exaggerated fashion Eq. (31)
has been graphed for a = 1, e = 0.25, € = 0.05 and € = 0,10 at 10° intervals
in the true anomaly. The solution of Eqs. (22) in the form given by Eq. (29)
can not be reliably carried out beyond €v ™~ 1 except by piecewise continuation.

D. The Exact Solution

The exact solution of Eqs. (22a, b) involves elliptic functions. We

need, at minimum, the sine amplitude, sn, the cosine amplitude, cn, and the

delta amplitude, dn. We can define the sine amplitude via

()
pe [ - «?sin?0)230, en(u, ) = sind, (34b)
o
and the others by » ﬂ
.
2 2
sn (M, K) + cn" (M, K) = 1, (34a)

2
onlu, k) + da?(u, €y = 1.

17
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While these functions have various addition theorems, half-angle formulas,

periodicities, etc. we shall need few of them here. In particular though,

sn?(u/2,k) = [1 = en(u,k)1/I1 + dn(u,)], (35a)

cn® u/2,x) = [en(u,c) + dn(u)1/I1 + dnu i) ], (35b)

dnz(u/Z.x) = [en(u,k) + dn(u,k)1/[1 + en(u,k)], (35¢)

sy + v,x) = [sn(u,k)en(v, K)gn(v ,K) + sn(v K)en(u,k)dn(y, K)] (35d)
1 -«k"sn (u,K)sn (v,Kk)

sn[K(k),k] =1, (36a)

sn[u + 4K(x), k] = sn(y,K), (36b)

where the complete elliptic integral of the first kind, K, is given by

m/2
K&) = [ (1 - k%ide)l/2qe. (36¢)
o

The quantity Kk is called the modulus. The last thing we need to know is that

any integral of the form

7.7 dx (31

Rl(x) + Rz(x)P

1=[Y
Y1 R3(x) + R4(x)P
where Ri(x), i=1,2,3,4 is a rational function of x and P is a quartic

polynomial in x with real coefficients, can be reduced to an elliptic

function (or sum of them).




Now, Eqs. (22a, 22b) are of the form (37) if we rewrite them as
dr/dv = + {-rF(x)/[a%(1 - e%)1}2. (38)

We also know that r' > 0 for ve[O, va] and r' < 0 for ve[va, vp]. The true
anomalies of first apogee passage and second perigee passages are approximately

given in Egqs. (32). Thus,

r i +1

R, [-sF) 1?2 aq -

v
e2 172 { dw; Rp ST<R,02v<v, (39a)

F s <

Ra [-sF(s)]l/2 a(l -

v

There exists a standard technique for reducing integrals of the form (37)
to the standard forms [of which (34a) is one example]. The results are

for our cases

1/2
-1 Ra - Ro r - R
Yv/2 = sn F . ?—:T{‘E , ks vs[(),va], (40a)
2 R R -r|l/?
-1 .
Y(v - va)/2 = sn i_a_lj_Tp 3 - , k] ve[va,vp], (40b)

where the modulus, k, is given by

21
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R(R_ -R)
‘ 2 0o a 2
N | k --R(R._:R)'k +-0as € * 0, (40c)

3 P a o 4
and the quantity y is given by }
R (R ) :

- R
E S o S SRS SR e (40d) ]

E | 2 2
a“(1 - e%) . -
I1f we use Eqs. (34, 35, and 36) then both of Eqs. (40a, b) can be 3 1

transformed into 5

RR {[1+ dn(yv,k)] -k [1 - ca(yv,k)]}
P * (41)

r(v) =

R [1 + dn(yv,k)] - Rpkzll - en(yv,k)]

We can now rederive all of our earlier work as a check. From Eq. (36c)

we see that if x is small,

K(k) = (m/2)(1 + Kzla). (36d) ‘

Then from Eq. (36a) it follows that

v, =7 {1+ 3e/[21 - D%}, (32a)

From Eqs. (39) and this result Eq. (32b) follows immediately. Also, from

Eqs. (34) it follows that if k 1is small, ;

s s o e

22
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cn(y,K) = cosu + (K2/4)(u - sinpcosp)siny, (344d)

dn(u,k) = 1 - (k2/2)sin’y, (34e)

so, from these approximations, Eqs. (40c, d and 41) the result in Eq. (31)
can be derived. The periodicity of the motion is assured because cn and
dn share 4K as a period. The only remaining point is the time dependence
of r and v which can be computed directly from Eqs. (18) and involves

other elliptic functions.
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IT1. GENERAL MOTION

In this section the rates of change of the energy and the angular
momentum are used to derive the first-order secular perturbations in
four (a, e, i, and ) of the six orbital elements. The analysis of the
preceding section has determined the changes in the other two except for
a multiplicative dependence on inclination (which is non-zero for i = 0) and
an additive dependence on inclination (which vanishes for i = 0). At the
end of this section one version of the classical perturbation equations is
given and solved.

The potential was given in Eqs. (14, 15).

A. The Work Done by J

2
The work done by Jys dE/dt, is given by

dE/dt = - VU * . (42a)
Over the course of one revolution the change in E is

AE = SEdt. (42b)
One can't simply note that V x VU = 0 and use Green's theorem to evaluate

this though. The sign, §, means integrate around one complete circuit of

the perturbed orbit. We can not assume that this leads to the same point

in space. If we split U into Uo + nU, where Uo = - u/r then,




ST e e

oo
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$

AE = AEo + L\.‘.1 = §[ -V -nvy] * fdt.

(42¢)

Now, to first-order in N we can deform the contour for the U° integration

to be the unperturbed orbit. Now we exploit the fact that the force due to Uo

is conservative so AEo = 0. Since nU

1

deform the contour and AE1 = 0. But,

SO

€ =-1u/2a,

Aa = 0 or da/dt)sec =0,

is already first-order, we can again

(21)

(43a)

where da/dt)sec is the first-order secular rate of change of the semi-major

axis due to Jz.

B. The Torque Due to J2

The rate of change of the angular momentum due to J

2

dL/dt = r x F= ~x x VU = - nrxVu,,

is given by

since U° represents a central force. By direct computation we find

and

L = - 3(unz/e)(y, -x, 0),

25

(44a)

(44b)
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P
8L = [ fde » =uaial (cosf?, sin®, 0),
- - 2 2.3/2
o 2na“(1 - &%)

= (ALx, ALy' ALz).
From Eqs. (6)

AL = (L + AL) (sin[Q + AQ)sin[i + Ai],

cos[Q + AQ]sin[i + Ai], cos[i + A1]) - L

1]

AL(sinQsini, - cosQsini, cosi)
+ LAQ(cosQisini, sinQisini, 0)
+ LAi(sinfQdcosi, - cosflcosi, - sini).
From Eqs. (45) we find
AL = ALxsinﬂsini - ALycostini + Achosi,
LAQsini = ALxcosQ + ALysinﬂ,
LA = Aanichosi - ALycochosi - ALzsini,

so, after dividing by P and setting Ai/P = di/dt)sec etc.,

di/dc)sec = 0,

26

(44¢c)

(45a)

(45b)

(45¢)
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- R

an/dt) = - 3encosi/[2(1 - ¥, (43c)

da/dt) = [2ea/(1 - ez)]de/dt)sec, (46)

where Eq. (6b) has been used to derive Eq. (46) from dL/dt)sec = 0. Equation

N (46) and Eq. (43a) lead to f

de/dt)sec = 0, (43d)

Equations (43) then summarize our results. We see, therefore, that the
application of the equations for the time rates of change and E and L have
simply and directly enabled us to solve two-thirds of the perturbation
problem. This approach also gives a direct physical insight into the cause
of the perturbations as well as their effects.

C. Classical Perturbation Theory

The two-body problem with the potential given in Eq. (1llc) forms the
cornerstone of celestial mechanics. It represents the situation exactly and
can be solved exactly. Hence, it is treated in all mechanics texts and is
fully developed analytically. The coordinate system represented by the six

orbital elements has become familiar and useful. Intuitively, if the total

real force in a problem only departs slightly from that given by -VUO, the
orbital elements themselves can only change slowly. This is the foundation

of classical perturbation theory. The three, second-order, differential

o e P PPN

equations given by F = ma are replaced by six, first-order differential




equations for de/dt, di/dt, etc. This can be performed in a variety of
ways for both non-conservative and conservative forces. The reduction
b is purely a computational problem and can be simplified by using the

Lagrangian formalism. The important restriction is the condition of

osculation. This mathematical statement's content is that both r and &

can be computed from the osculating values of the orbital elements via

e T TR I Y - 3

the ordinary, two-body, Keplerian formulas.
I shall give one form of the conservative equations here. Others,
to be found in the standard reference texts, will vary in the choice of

orbital parameters. Let the perturbing force be given by

E?ert - A (46)
Then,
da/dt = [2/(na)]3U'/3M, (47a) ;
de/dt = {(1 - e?)/[naZe]}du' /M - {1 - e2)}/?/[na%e]}au" /30,  (47b) !
dw/dt = - {coti/[naZ(l - e2)M213au /a1 + (@ - €212/ [nale]}ou /e, (47c) i
di/dt = {coti/[na2(1 - €2)1/21}au' /3w - {csci/[na(1 - e2)Y/2)}13u' /20, (474)
dQ/dt = {cnci/[naz(l - 02)1/2]}80'/31. (47e)




dM/dt = - {(1 - e®)?/[na%e]}au’ /2e - [2/(na)]3U'/3a.

As an illustration of how to use these, we take
' 2 3
U' = (nu)(1 - 3sin“8)/(2rY), (48)

from Eq. (l4a). Since U' is already of first order, we can replace § and r
via Eqs. (9b and 1) in U', compute the derivatives on the right-hand sides of
Eqs. (47), regard a, e, ..., as constants, and integrate. This will give us
knowledge we have not yet derived, the explicit time dependence of a, e, ...,
as opposed to their secular rates of change. Of course, if we integrate over
a period we reproduce Eqs. (43a - d) and can derive the inclination dependence
for dw/dt and dT/dt. The latter results are

2

dm/dt:)Bec = 3en(5cos”1 - 1)/[4(1 - e2)2], (43e)

ar/ar) = - 3e(l - 3stn’tetn?u)/[2C1 - &)3]. (43£)
Note that for coszi = 1/5 (1 = 63° 26' 582 or i = 116° 33' 54'18) there
is no perigee advance due to J2 (in first-order theory!).
Equations (47), or their non-conservative generalization, give us a
very powerful tool for studying long-term perturbing effects analytically
since short-period perturbations can be left out (they'll be averaged over

anyway) .
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IV. A VERY RESTRICTED THREE-BODY PROBLEM

We could, of course, discuss third body perturbations within the frame-
work of classical perturbation theory. However, in its simplest formulation,
this problem admits an analytical first order solution so we'll follow a
physicist's approach. Moreover, this time we will solve directly for the
time dependence of r and v instead of for r(v). To set the stage the

satellite's unperturbed orbit is circular, viz
2 3,.2
r=a, v=2mt/P with 41°a /P = . (49a)

In the plane of the orbit lies another body, of mass Mp, also revolving

about the earth in a circular orbit,
r =a,v_ =2mt/P_+y, 4niad/pt = . (49b)
P P P P P P
However, ap>>a or P>>Pp. Thus, we can regard the perturbing body to be fixed

for a few revolutions of the satellite (a poor approximation for the Moon but

a reasonable one for the Sun). The potential for the problem is
U= -u/r - GM - 50
n/ pll_r? z|, (50)
or

e ¥ 2 - & 1/2
U u/r GHp/[ap +r 2rapcos(v vp] . (51)
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é
% The equations of motion of the satellite are still Egs. (lla, b). If we
i
! use the approximations mentioned above they become
e .2 2
Y - rv = -u/r” + yecos(v - y), (52a)
Lx o & ’
v + 2tv = - esin(v - ¢), (52b) :
€ = (aM_/a®)/GM /a?). (52¢)
f P p @
For the Sun € = 0.026, for the Moon € = 0.00015. We set
r=a+ €ry, v = 2me/P + Evys (53)
substitute into Eqs. (52), linearize, and find
e 2 2 X 2
¥ - 12w rllP ~ 4uav1/P = (u/a”)cos(2mt/P - V), (54a)
av) + 4nt /o = - (w/a®)sin(2me/p - V). (54b)
] As initial conditions we use
r(0) = 0, v(0) = 0, (55a)
E'
[ £(0) = 0, v(0) = 21/P. (55b)
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We can integrate the v, equation once, substitute that into the rl

1

equation and then integrate it twice. We then return to the vy equation

to find it. The answer is

r/a = 1 + €[Bcos(2mt/P + ¢) + (3mt/P)sin(2mt/P - Y) - 2cosy], (56a)

v = 2nt/P - €{2Bsin(2mt/P + ¢) - (3mt/P)[cos(2mt/P - Y) + cosy]

+ 2sin(2nt/P - ) + S5siny}, (56b)
where

Bcosp = 2cosy, (56¢)

Bsin$ = ~(3/2)siny, (56d)

and this solution is valid for times |t| < P/(2me).

Given the artificial nature of the problem, it seems best just to
illustrate the motion for a few values of € and §. Figures 5 - 8 show the
unperturbed circular orbit as a full curve and the perturbed orbit as a
series of equally spaced dots [At = (1/3€)'th of the unperturbed period] for
Y = 0(90)360°, € = 0.05 from t = O until t = P. From the location of Mp and
the direction of the initial velocity vector, we can simply interpret the

results. It is a numerical accident that for Y = 90° or 270° v(P) = 0.

=

R




‘T =31 ‘0 =3 =A 38 pajiels

sf{emTe ST UOTIOW IY] °GO°'Q0 = 3 ‘[ = ®© 103 UMBIp d1F S3AIND [V °Molile
2yl £q pa3edTpur ST 13qan3iad 3yl JO UOTIDAATP IYyJ *potraad paqanjaad
-uou 3yl ST 4 213ym 9¢/d Ie Swfl ur padeds K[Tenba aie yoyym sjop

a3yl Aq uaar8 sy uorjow paqinjiad ayy -aAIND 1In3 2yl £q pajuasaidaa

ST uorjow paqinjiadun 3yj saandry 231yl IXau ayYyj pue STY3I Ul °G *31a

0022

00 — &— = — o081

<06




‘T =1 °0 =3 =4 3e pa23iels

sfAemie sT uorlow 3yl ‘GO0 = 3 ‘T = ® 103 umelp 3ie S3aAIND IV °MOl1le
24yl £q pa3iedIpur ST i1aqanizad ayj JO uoT308aTp 3y -poraad paganiaad
-uou 3yl ST 4 219ym 9¢ /4 3Ie awrl ur padeds L[renba aie Yyorym sjop

2Yy3 £q uaa18 ST uorjow paginiiad Iyl ‘IAIND TInJ 3yl Aq pajuasaidaix

ST uorjow paqiniiadun ayj sai1n81J oMl 3IX3uU 3Yy3 pue STyl uy -9 814

0042




b

‘T =1 °0 =13 =A 3 polaels skemTe sy

uorjow ¥Yy °G0‘0 = 3 ‘I = B 103 UMBIP 3IB SIAIND [IV °MOIIE 9yl 4£q
P21BOTPUT ST 13qan3jiad ayj jo uor3daafp ayj -poraad pa2qanjiad-uou
24l ST d 219ym 9¢/d I swrl uy padeds A[renbs aie yorym sjop ay3

£q usAT8 ST uorjow paqanjiad ayj -aAInD T1In3 @243l Aq pa3jussaidaa

, ST uorjow paqinjiadun ay3 ain8r3J IXau ayj pue sSyY3 uj *l 314

o0L2
wv

® o o0 000
35

o0 —

L] ® —D — .08l

0019-6-81




S 1 b R b AN SR SN o i L i (LB

‘T =1 ‘0 =3 = A 1e pa3iels sem[e ST uUorlow

24yl 600 = 2 ‘] = B 103 UmMBIp 31B S3AIND J[Y -MOl1ie 3Y3l £q
P23BDTPUT ST 13qan3liad 3y jo UOTIDAITP 3Yy] °poraad pagqaniiad
-uou 3yl ST 4 213ym 9g /4 Ie dwWII ur padeds Ayrenbs aie yorym
s30p 2yl 4Aq uaAr8 ST uorjomw paqaniiad 3yl ‘2aInNd TTnJ 3y3 £q
pa2iuasaidax sy uorjow paqanijiadun ay3 aindry siyl uy g 813

002

|




P i

UNCLASSIFIED

SECURITY C MKIATION OF THIS PAGE (WAen Data Entered)

READ INSTRUCTIONS
’ t ) REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
PORT s ’ 2. GOVT ACCESSION NO. | 3. RECIPIENT'S CATALOG NUMBER
% ESDYJIR-79-194
m.e Tand Subtiile) 5. TYPE OF REPORT & PERIOD COVERED
R . % 1 1 T;:h:ical )éne /
‘ !b A Physicist's Guide lo}- 4 / i
s e p 3 PERFORMING oac REPORY NUMBER
RSN (- il Technical Note 1979-50
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
= 1 R,
p O Laurence (:./Taff X \ J;\ﬂﬁ%zs-n-c-oo;zv
9. I;ERFORMING ORGANIZATION NAME AND ADDRESS 10. :REGRAM ELEMENT, PROJECT, TASK
Lincoln Laboratory, M.I.T. s iy
P.O. Box 73 Program Element No. 63428F
Lexington, MA 02173 Proje
11. CONTROLLING OFFICE NAME AND ADDRESS p REPORTNQALRZ.
Air Force Systems Command, USAF S 3 Awn ;
Andrews AFB { Jr i, e
Washington, DC 20331 NS NUMBER OF PAGES All/ -3
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) 15. SECURITY CLASS. (of sM
Electronic Systems Division Unclassified
Hanscom AFB
Bedford, MA 01731 15a. DECLASSIFICATION DOWNGRADING
SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited. ; / 7 )\/ w L YTT =t g
{ f P » :
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if differens from Report)
18. SUPPLEMENTARY NOTES
None p
19. KEY WORDS (Continue on reversg side if necessary ond identify by block number)
GEODSS perturbations celestial mechanics
rotational modon orbital moton translational motion
{
2. AKSTIACT (Continue on reverse side if necessary and idaptify by block number)
/ This report presents a first-order discussion of the perturbations in the orbital moton of a
satellite about an oblate primary. The approach is non-traditional in that the secular changes in
the semi-major axis, eccentricity, inclination, and longitude of the ascending node are all derived
directly from the transladonal and rotational equations of motion. The exactly solvable problem
of motion in the primary's equatorial plane is used to obtain the advance of the argument of periastron
and the consequent change in the time of periastron passage. In addition, a simple discussion of a
very restricted three-body problem is given to illustrate the effects of third-body perturbations. 4
00 "O™ 1473 eoimion OF 1 NOV ¢s is OBsOLETE
1JAN 73 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (WAen Data Entered)

R e




